Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(-)-(4R,5S)-4-Methyl-3-[2(R)-(4-methyl-phenyl)propionyl]-5-phenyloxazolidin-2-one

Sameer Chavda, ${ }^{\mathbf{a}}$ Jason Eames, ${ }^{\text {b }}$ * Anthony Flinn, ${ }^{\text {c }}$ Majid Motevalli ${ }^{\text {a }}$ and Nela Malatesti ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England, ${ }^{\text {c }}$ Onyx Scientific Limited, Units 97-98, Silverbriar, Sunderland Enterprise Park East, Sunderland SR5 2TQ, England, and ${ }^{\mathbf{d}}$ Department of Chemistry, J. J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, Osijek 31000, Croatia

Correspondence e-mail: j.eames@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=7.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}$, formed from enantiomerically pure (+)-(4R,5S)-4-methyl-5-phenyl-2-oxazolidinone and racemic 2-(4-methylphenyl)propanoyl chloride, the two carbonyl groups are oriented anti to each other, and the methyl group of the (4-methylphenyl)propionyl substituent lies close to the mean plane of the five-membered ring.

Comment

The title compound is the third in a series of structurally related compounds, introduced in our earlier report (Coumbarides, Eames et al., 2006). With $R^{1}=4-\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$, the reaction shown in that report yielded the anti-syn and syn-syn diastereomers in 38 and 38% yields, respectively. The title compound, (I), is the anti-syn diastereomer (Fig. 1). In the crystal structure, the conformation of the central portion of the molecule is closely comparable with that in the previously reported derivatives (Coumbarides, Eames et al., 2006; Coumbarides, Dingjan et al., 2006); in the twisted fivemembered ring, atoms C1 and C2 lie, respectively, 0.245 (4) \AA above and -0.202 (4) A below the plane defined by atoms O1, $\mathrm{O} 2, \mathrm{~N} 1$ and C 3 . The carbonyl groups $(\mathrm{C} 3=\mathrm{O} 2$ and $\mathrm{C} 11=\mathrm{O} 3)$ are oriented anti to each other, with the torsion angle O3$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 3=-169.3(2)^{\circ}$. The orientation of the $4-$ $\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$ substituent resembles most closely that in the 4 $\left({ }^{i} \mathrm{Bu}\right) \mathrm{C}_{6} \mathrm{H}_{4}$ derivative (Coumbarides, Dingjan et al., 2006), with the C 19 methyl group lying close to the mean plane of the fivemembered ring [deviating by 0.138 (8) \AA from it] and the torsion angle $\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13=78.7(3)^{\circ}$.

(I)

Experimental

The experimental procedure is comparable with that reported previously (Coumbarides, Eames et al., 2006). The actual quantities used for the preparation of (I) were: n-butyllithium ($15.45 \mathrm{ml}, 2.5 \mathrm{M}$ in hexanes, 38.6 mmol) and (R, S)-oxazolidinone ($4.89 \mathrm{~g}, 27.6 \mathrm{mmol}$) in 60 ml tetrahydrofuran (THF), combined with a solution of (rac)-2-(4-methylphenyl)propanoyl chloride ($5.02 \mathrm{~g}, 27.6 \mathrm{mmol}$) in 10 ml THF. The crude residue was purified by flash column chromatography on silica gel, eluting with light petroleum (b.p. 313-333 K)/diethyl ether (1:1), to give a separable diastereoisomeric mixture in the ratio anti-syn:syn,syn 50:50. The anti-syn diastereomer was obtained as

Received 27 June 2006
Accepted 12 August 2006
colourless crystals ($3.39 \mathrm{~g}, 38 \%$ yield, m.p. $341-343 \mathrm{~K}, R_{\mathrm{F}} 0.71$ [light petroleum (b.p 313-333 K)/diethyl ether, 7:3]. Spectroscopic analysis: $[\alpha]_{\mathrm{D}}^{20}=-164.5\left(\mathrm{CHCl}_{3}, 293 \mathrm{~K}\right.$, concentration 0.18 g per 100 ml$)$; IR $\left(\mathrm{CHCl}_{3}, \nu_{\max } / \mathrm{cm}^{-1}\right): 1779(\mathrm{C}=\mathrm{O}), 1710(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (270 MHz ; $\left.\mathrm{CDCl}_{3}\right): \delta 7.36-7.24(9 \mathrm{H}, m, 9 \times \mathrm{CH}$; Ar and Ph$), 5.46(1 \mathrm{H}, d, J=$ $6.9 \mathrm{~Hz}, \mathrm{CHO}), 5.07(1 \mathrm{H}, q, J=7.1 \mathrm{~Hz}, \mathrm{ArCH}), 4.65(1 \mathrm{H}, m$, $\left.\mathrm{NCHCH}_{3}\right), 2.31\left(3 \mathrm{H}, s, \mathrm{CH}_{3} ; \mathrm{Ar}\right), 1.46\left(3 \mathrm{H}, d, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, $0.91\left(3 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ $174.8(\mathrm{NC}=\mathrm{O}), 152.9(\mathrm{OC}=\mathrm{O}), 137.7,137.1,133.9(3 \times i-\mathrm{C}$; Ar and $\mathrm{Ph})$, 129.7, 129.1, 128.3, 128.3, $126.1(5 \times \mathrm{CH}$; Ar and Ph$), 79.1$ (PhCHO), $55.0(\mathrm{CHN}), 43.6(\mathrm{ArCH}), 21.4\left(\mathrm{CH}_{3} ; \mathrm{Ar}\right), 19.8\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $14.5\left(\mathrm{CH}_{3} \mathrm{CHN}\right)$; found: MH^{+}324.1187; $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3}$ requires 324.1194.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}$
$M_{r}=323.38$
Monoclinic, $P 2_{11}$
$a=13.066(8) \AA$
$b=9.509(8) \AA$
$c=7.201(4) \AA$
$\beta=102.95(4)^{\circ}$
$V=871.9(10) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
1743 measured reflections
1630 independent reflections

$Z=2$

$D_{x}=1.232 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Prism, colourless $0.40 \times 0.30 \times 0.30 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=1.06$
1630 reflections
220 parameters
H -atom parameters constrained

H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The methyl groups were allowed to rotate about their local threefold axes. In the absence

Figure 1
The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
of significant anomalous scattering effects, the few measured Friedel pairs have been merged. The absolute configuration is assigned on the basis of the known configuration of the starting material (Coumbarides, Eames et al., 2006).

Data collection: CAD-4-PC (Enraf-Nonius, 1994); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Royal Society and the University of London Central Research Fund for their financial support to JE, and the EPSRC National Mass Spectrometry Service (Swansea) for accurate mass determination.

References

Coumbarides, G. S., Dingjan, M., Eames, J., Motevalli, M. \& Nela, M. (2006). Acta Cryst. E62, o4035-o4036.
Coumbarides, G. S., Eames, J., Motevalli, M., Malatesti, N. \& Yohannes, Y. (2006). Acta Cryst. E62, o4032-o4034.

Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

